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Thyroid hormone receptors (TR) play critical roles in virtually all

tissues. The TR ligand-binding domain (LBD) participates in

important activities, such as transcriptional activation and repression,

through conformational changes induced by hormone binding. Two

crystal forms of isoform �1 of the human thyroid hormone receptor

LBD (hTR�1) in complex with the thyroid hormones T3 and Triac

were obtained. The hTR�1±T3 complex was crystallized in a

previously unobserved crystal form (space group P212121, a = 59.98,

b = 80.80, c = 102.21 AÊ ), with diffraction patterns extending to 1.90 AÊ

resolution on a rotating-anode X-ray source, and in space group C2

(a = 117.54, b = 80.66, c = 62.55 AÊ , �= 121.04�), with data extending to

2.32 AÊ resolution. The hTR�1±Triac complex was also crystallized in

the new space group P212121, with unit-cell parameters a = 60.01,

b = 80.82, c = 102.39 AÊ ; its resolution limit extended to 2.20 AÊ on a

home source. Phasing was carried out by the molecular-replacement

method and structural re®nement is currently in progress. The re®ned

structures may provide insight into the design of new thyromimetics.
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1. Introduction

Thyroid hormone receptors (TRs), members of

a superfamily of eukaryotic transcription

factors, are ligand-activated transcription

factors that bind to thyroid hormone-response

elements (TREs) in the regulatory region of

target genes and mediate the biological effects

of thyroid hormones. The receptors exhibit a

modular structure with functionally separable

domains. The most highly conserved domains

are the DNA-binding domain (DBD) and the

ligand-binding domain (LBD) (Evans, 1988;

Laudet et al., 1992). The LBD participates in

several types of activity, including hormone

binding, homo- and/or heterodimerization,

molecular interactions with heat-shock

proteins and transcriptional activation and

repression (Tsai & O'Malley, 1994; Ribeiro et

al., 1995). Hormone binding induces confor-

mational changes which control these proper-

ties and in¯uence gene expression (Tsai &

O'Malley, 1994; Ribeiro et al., 1995). Therefore,

the three-dimensional structure of a liganded

LBD is critical for understanding the structural

mechanisms of hormone action.

Thyroid hormones, namely 3,5,30-triiodo-l-

thyronine (T3), 3,5,30,50-tetraiodo-l-thyronine

(T4) and 3,5,30-triiodothyroacetic acid (Triac),

play critical roles in the differentiation, growth,

metabolism and physiological function of

virtually all tissues. Two major subtypes of

thyroid hormone receptors (TR�1 and TR�2,

and TR�1 and TR�2) are encoded by two

different genes (Ribeiro et al., 1995). TR�1,

TR�1 and TR�2 are ligand-binding isoforms of

TR, whereas TR�2 does not bind thyroid

hormones. Differences in af®nity towards

thyroid hormones are observed amongst the

different ligand-binding isoforms. TRs mediate

distinct physiological effects owing to differ-

ences in tissue abundance and receptor-speci®c

activity (Forrest & VennstroÈ m, 2000). Studies

in patients with the syndrome of resistance to

thyroid hormones, in which abnormal TR� is

present, and with TR�1ÿ/ÿ mice suggest that

TR� is the major TR regulating heart rate

(Johansson et al., 1998; Forrest & VennstroÈ m,

2000; Yen, 2001; Gloss et al., 2001). TR� is

critical in controlling hepatic cholesterol

metabolism and thyroid-stimulating hormone

(TSH) suppression, which may be because of

the high expression of TR� in liver (70±80% of

total TR) and pituitary (Schwartz et al., 1992;

WikstroÈ m et al., 1998; Gloss et al., 2001). In

particular, TR�1 is widely distributed in the

tissues and regulates metabolic rate. Identi-

fying thyromimetics that interact selectively

with the isoforms TR�1 and TR�1 may be

crucial in treating important diseases such as

obesity and lipid disorders.

The available TR structural data include rat

TR�1 LBD in complex with T3 (Wagner et al.,

1995) and Triac (Wagner et al., 2001) and

human TR�1 LBD (hTR�1) in complex with a

synthetic thyromimetic (Ye et al., 2003).

However, despite this previous work, the

structural basis for the selectivity of the TR
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isoforms in thyroid ligand binding is not yet

well established. To further investigate the

molecular mechanism of hTR�1 speci®city,

X-ray crystallographic studies were recently

initiated. In this work, we report the puri®-

cation, crystallization, data collection and

molecular-replacement solutions obtained

for hTR�1 in complex with T3 and Triac.

Data to higher resolution than previously

published (Ye et al., 2003; Dow et al., 2003)

have been obtained, which is likely to be a

consequence of a different molecular

packing. These new studies may be impor-

tant for better understanding of the struc-

tural basis of TR isoform selectivity and for

the design of more potent isoform-speci®c

thyromimetics.

2. Materials and methods

2.1. Expression and purification

The human TR�1 LBD construct

including amino-acid residues Glu148±

Val410 (NCBI protein accession No.

A40917) fused in frame to the C-terminus of

a polyhistidine (His) tag was expressed in

Escherichia coli strain B834 harbouring a

pET28a(+) plasmid (Novagen), as illu-

strated in Fig. 1. A Luria Broth [LB;

1.6%(w/v) tryptose, 1%(w/v) yeast extract,

0.5%(w/v) NaCl] starter culture was inocu-

lated with a single colony of an LB-agar

culture and grown overnight at 310 K. The

initial culture was inoculated at 1% in a

major LB culture and grown at 293 K in

kanamycin medium until the A600 nm reached

1.7. After this, isopropyl thio-�-d-galacto-

side (IPTG) was added to a concentration of

0.5 mM and culture growth was continued

for 6 h at 293 K.

The cells were harvested by centrifugation

and the pellet resuspended in 50 mM Tris±

HCl buffer pH 7.5 containing 150 mM NaCl,

0.05% Tween-20, 1 mM phenylmethyl-

sulfonyl¯uoride (PMSF) and 20 mM

2-mercaptoethanol. The culture was incu-

bated on ice with 0.5 mg mlÿ1 lysozyme and

disrupted by sonication. The lysate was

centrifuged for 20 min at 14 000 rev minÿ1

in a Sorvall SS34 rotor at 277 K and the

obtained supernatant was incubated for

30 min with a 20-fold molar excess of T3

(Sigma) or Triac (Sigma).

To purify the holo hTR�1, the super-

natant was mixed with Talon Super¯ow

Metal Af®nity Resin (Clontech) and shaken

at 277 K for 1 h. The resin was washed twice

with 50 mM sodium phosphate buffer pH 8.0

containing 300 mM NaCl, 10% glycerol,

10 mM 2-mercaptoethanol, 25 mM imida-

zole, 1 mM PMSF and 0.05% Tween-20 and

twice with the same solution without Tween-

20. The protein was eluted in a single step

with 50 mM sodium phosphate buffer pH 8.0

containing 300 mM NaCl, 10% glycerol,

10 mM 2-mercaptoethanol, 1 mM PMSF,

0.05% Tween-20 and 500 mM imidazole.

After the af®nity column, the fractions

were pooled and corrected for the conduc-

tivity of the initial phenyl solution. The

protein was applied onto a Phenyl 5PW 8/75

(TosoHaas) column pre-equilibrated with

20 mM Na HEPES buffer pH 8.0 containing

0.5 mM EDTA, 700 mM (NH4)2SO4, 3 mM

dithiotreitol (DTT). The column was washed

with the previous solution and eluted with a

90 min 0±100% gradient of 20 mM Na

HEPES buffer pH 8.0 containing 0.5 mM

EDTA, 20% glycerol, 10% acetonitrile,

3 mM DTT at 0.75 ml minÿ1. After this step,

the protein was loaded onto a HL Superdex

200 or 75 26/60 gel-®ltration column

(Amersham Bioscience) equilibrated with

20 mM Na HEPES buffer pH 8.0 containing

1 mM EDTA, 3 mM DTT, 0.01% Tween-20

and 200 mM NaCl. The protein recovered

was concentrated by ultra®ltration (Amicon

Ultra 10 kDa MWCO, Millipore), resus-

pended in a solution of 600 mM NaCl and

3 mM DTT and further concentrated to

10 mg mlÿ1.

The protein content and purity of all

chromatographic fractions were checked by

Coomassie Blue-stained SDS±PAGE. The

average yield of the protein was about 6 mg

per litre of culture, with purity higher than

99%. Protein concentrations were deter-

mined using the Bradford dye assay (Bio-

Rad) using bovine serum albumin as stan-

dard.

2.2. Crystallization

Initial crystallization conditions were

screened at temperatures of 277 and 291 K

by the sparse-matrix method (Jancarik &

Kim, 1991) using the macromolecular crys-

tallization reagent kits Crystal Screens I and

II (Hampton Research). In each trial, a

hanging drop of 1 ml of protein solution

containing either T3 or Triac (see x2.1) was

mixed with 1 ml precipitant solution and

equilibrated against a reservoir containing

500 ml precipitant solution. At both

temperatures, evidence for crystals was

found in Hampton Crystal Screen I solution

No. 07, formulated with 1.4 M sodium

acetate trihydrate (NaH3OAc) and 0.1 M

sodium cacodylate (NaCac) pH 6.5. For both

the T3 and Triac complexes, further optimi-

zation at 291 K led to crystallization condi-
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Figure 1
Schematic diagrams of human TR�1 (hTR�1) and the construct used in the crystallographic experiments (hTR�1
construct), showing the N-terminal, DBD (DNA-binding), hinge (connecting region) and LBD (ligand-binding)
domains. Numbers indicate the amino-acid positions in the receptors. The amino acids of the plasmid pET28a(+)
that is coexpressed with hTR�1 construct are shown.

Table 1
Crystal parameters and data-collection statistics.

Values in parentheses refer to the last resolution shell

T3 complex Triac complex

Space group P212121 C2 P212121

Unit-cell parameters
a (AÊ ) 59.98 117.54 60.01
b (AÊ ) 80.80 80.66 80.82
c (AÊ ) 102.21 62.55 102.39
� (�) 121.04

Solvent content (%) 68.3 69.1 68.4
ASU content (molecules) 1 1 1
Resolution range (AÊ ) 31.47±1.90 (2.00±1.90) 19.92±2.32 (2.45±2.32) 48.22±2.20 (2.32±2.20)
No. images 260 77 291
No. observed re¯ections 323718 32461 267634
No. unique re¯ections 39272 18188 26000
Multiplicity 8.2 (7.8) 1.8 (1.7) 10.3 (11.0)
Completeness (%) 98.7 (98.9) 83.7 (87.3) 100 (100)
Rsym (%) 5.9 (38.3) 7.9 (37.5) 5.9 (37.5)
hI/�(I)i 7.8 (2.0) 7.7 (2.0) 11.2 (2.1)
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tions similar to those reported for human

TR� LBD complexes (Wagner et al., 2001).

A reservoir solution containing 1.0 M

NaCac and 0.1 M NaH3OAc pH 7.2 was

mixed with protein solution in equal

amounts and equilibrated against reservoir

solution at 291 K. Well formed crystals grew

within 12±24 h.

Two different crystal forms of hTR�1 in

complex with T3 have been obtained

(Table 1). Crystals were grown under the

same crystallization conditions and exhib-

ited similar morphology (Fig. 2). In the case

of the hTR�1±Triac complex, only crystals

belonging to the previously unobserved

space group P212121 were obtained, with

unit-cell parameters similar to those of the

corresponding crystal form of the hTR�1±

T3 complex; however, they had a somewhat

different morphology (Table 1 and Fig. 3).

2.3. Data collection

X-ray diffraction experiments were

performed with a MAR Research

MAR345dtb image-plate detector mounted

on a Rigaku UltraX 18 rotating-anode X-ray

generator providing Cu K� radiation

(1.5418 AÊ ), operated at 50 kV and 100 mA

and equipped with Osmic confocal Max-

Flux optics.

To prevent radiation damage, cryocrys-

tallographic techniques (Garman &

Schneider, 1997) were employed. Crystals

were brie¯y soaked in a cryoprotectant

solution containing 1.0 M NaCac, 0.1 M

NaH3OAc pH 7.2 and 20%(v/v) ethylene

glycol and rapidly cooled in a gaseous

nitrogen stream (Oxford Cryosystems).

Data were collected by the oscillation

method from single crystals maintained at

100 K during data collection. In all cases, the

oscillation range was 1�, with exposure times

of 6 min (T3 complex, space group P212121),

15 min (T3 complex, space group C2)

and 20 min (Triac complex) per image

(Fig. 4).

A single data set was collected for each

crystal form of hTR�1±T3. X-ray data for

the orthorhombic crystal were collected with

a crystal-to-detector distance of 150 mm,

giving an outer edge resolution of 1.86 AÊ .

For the monoclinic form, the crystal-to-

detector distance was set to 200 mm, with a

maximum resolution of 2.21 AÊ at the

detector edge. The hTR�1±Triac data set

was collected using a crystal-to-detector
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Figure 2
Single crystals of hTR�1 in complex with T3. Typical
dimensions are 0.5 � 0.4 � 0.3 mm.

Figure 3
hTR�1±Triac crystals measuring approximately
�0.5 mm in the longest dimension.

Figure 4
A 1� oscillation frame from a cryocooled hTR�1±T3 crystal. Diffraction spots with hkl indices (ÿ21, ÿ28, 1),
(ÿ21,ÿ29, 1) and (ÿ22,ÿ31, 0) were marked at resolutions of 2.03, 2.00 and 1.88 AÊ , respectively. The resolution
at the edge of the image is 1.87 AÊ .

Figure 5
Stereoview of the hTR�1±T3 complex ligand-binding region. Initial 2Fobs ÿ Fcalc (blue) and Fobs ÿ Fcalc (red)
electron-density maps were contoured at the 1.0� and 3.0� levels, respectively, around the model (C� trace,
coloured yellow). The ®gure unequivocally indicates the presence of the ligand. The drawing was prepared using
PyMOL (DeLano Scienti®c, San Carlos, CA, USA; http://www.pymol.org).
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distance of 170 mm, with an outer edge

resolution of 2.00 AÊ .

3. Results and discussion

Data reduction was performed using

MOSFLM and SCALA (Collaborative

Computational Project, Number 4, 1994;

Winn et al., 1997). Crystal parameters and

data-collection statistics are summarized in

Table 1. The solvent content was calculated

using the total molecular weight of the

hTR�1 amino-acid sequence in addition to

21 amino acids from the initiation codon,

yielding a polypeptide of 284 amino acids

(MW = 32 205 Da; Table 1). The correct

number of molecules present in the asym-

metric unit (ASU) was determined during

the molecular-replacement procedure.

Primary sequence search and sequence

alignments were performed using ENTREZ

and BLAST (Altschul et al., 1997). A

sequence identity of 83%, with 92% simi-

larity, resulted from the alignment of hTR�1

(Nakai et al., 1988) and human TR�
(Weinberger et al., 1986; Sakurai et al., 1990).

Thus, chain A of the corresponding dimeric

X-ray structure (PDB code 1bsx; Darimont

et al., 1998) was used as a search model

(waters, the T3 molecule and a peptide

fragment of GRIP1, a coactivator, were

excluded from the search model). It is worth

noting that the recently reported thyroid

receptor structures (PDB codes 1nav and

1nax; Ye et al., 2003) could equally well be

used in this case.

Molecular-replacement calculations were

carried out using a resolution range of 10.0±

4.0 AÊ and default parameters in the program

AMoRe (Navaza, 1994; Collaborative

Computational Project, Number 4, 1994;

Winn et al., 1997). In all cases, clear solutions

were obtained for one molecule in the ASU.

A search for a second molecule was not

successful. After ®tting, correlation coef®-

cients of 60.2, 62.9 and 62.4% resulted for

hTR�1±T3 in the orthorhombic crystal

form, hTR�1±T3 in the monoclinic form and

hTR�1±Triac, respectively. The corre-

sponding R factors were 41.7, 39.5 and

41.9%, respectively.

The I atoms present in the T3 and Triac

molecules provided signi®cant anomalous

signal, except in the case of the monoclinic

form of hTR�1±T3 complex, the data set of

which contains a smaller number of images.

Thus, to certify whether the ligands were

bound to the active sites in the three struc-

tures, the following procedure was

employed. For each complex, an initial

model was built by application of the

suitable molecular-replacement solution

(PDBSET; Collaborative Computational

Project, Number 4, 1994; Winn et al., 1997),

from which structure factors were derived

using the program SFALL (Collaborative

Computational Project, Number 4, 1994;

Winn et al., 1997). Electron-density maps

(2Fobs ÿ Fcalc and Fobs ÿ Fcalc) were calcu-

lated and extended around the initial model.

The known ligand-binding region was

assessed by visual inspection using the

program O (Kleywegt et al., 2001),

contouring the 2Fobs ÿ Fcalc and Fobs ÿ Fcalc

maps at the 1.0� and 3.0� levels, respec-

tively. This approach was successful in

clearly identifying the presence of the ligand

in all three initial structures, as expected.

Fig. 5 illustrates this result for the hTR�1±

T3 complex in the orthorhombic crystal

form. Structural re®nement is in progress.
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